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This paper introduces an approach to measuring the cognitive complexity
of texts on various language levels. While standard readability indices are
based on the linear combination of primary statistics, our general approach
allows us to estimate complexity on morphological, lexical, syntactic, and
discursive levels. Each model is defined by the tokens for the specific lan-
guage level and the complexity function of a single token. We then use the
reference collection of moderately complex texts and the quantile-based
approach to spot the abnormally rare tokens. The proposed supervised
ensemble, based on the ElasticNet model, incorporates models from all
language levels. Having collected a labeled dataset through crowdsourc-
ing, consisting of pairs of articles from the Russian Wikipedia, we consider
several models and ensembles and compare them to common baselines.
Suggested models are flexible due to the freedom in choosing the refer-
ence collection. The described experiments confirm the competitiveness
of the proposed approach, as the ensembles demonstrate the best target
metric value.
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B paHHOM cTaTbe OnMcaH NOAXOA K OLLEHMBAHUIO KOTHUTUBHOM CIOXKHOCTU
TEKCTa Ha Pa3HbIX YPOBHSX A3blka. B oTnnyme ot nHaekcoB ynobountaemo-
CTW, KOTOPbIE OCHOBAHbI HA IMHENHON KOMOUHALLMN TEKCTOBBIX CTAaTUCTUK,
Mbl Npenaraem 06006LLEeHHbIV NOAX0A, NO33BONSAOLMIA OLLEHNBATbL CIIOX-
HOCTb Ha MOP®OSIOrMYECKOM, NIEKCUYECKOM, CUHTAKCUYECKOM U AUCKYP-
CVIBHOM YPOBHSIX f13blka. Mbl ncnonb3yem pedepeHTHbI KOPNyc TEKCTOB
1 KBAHTUMbHbIA NOAX0A, 41K ONpefeNieHNs TOKEHOB C @aHOMaJIbHOW YacTo-
To. CobpaB BbIOOPKY pa3dMeyeHHbIX nap AOKYMEHTOB pycckoi Bukune-
Oun, Mbl Takxe oby4yaemM 1 UCCefyeM NNHENHYI0O KOMOUHALMIO Moaenen
CO BCeX YPOBHeW A3blka. [prBeaeHHbIE B CTaTbe pedysbTaThl 9KCMEPUMEH-
TOB NMOKa3bIBaOT KOHKYPEHTOCMOCOBHOCTb NPEeAJIOXKEHHOr0 NoAxXo4a.

KnioueBble cnoBa: KOrHUTUBHAS CJIOXHOCTb, YPOBHU A3blka, 0OydYeHne
C yumTenem, pasBefoYHblii Nonck

1. Introduction

Automated text complexity measurement tools have been proposed in order
to help teachers to select textbooks that correspond to the students’ comprehen-
sion level and publishers to explore whether their articles are readable. Thus, plenty
of readability indexes (RIs) were developed. Readability indexes focus on estimating
complexity by evaluating aggregated syntactic and lexical features of the whole texts.
There are many well-known RIs, such as Automated Readability Index [13], Flesch-Kin-
caid readability tests [ 7], Gunning fog [8] and fairly modern ones like Linsear Write For-
mula [11]. They all use statistics like the total number of words, mean number of words
per sentence, or the number of syllables to evaluate how complex given text is. By com-
bining these statistics, RIs assign the given document a complexity score. For instance,
an Automated Readability Index (ARI) has the following form for the document d:

ARI(d) = 4.71 x < +0.5 x = — 21.43, o)
w S

where ¢ refers to the total number of letters in document d, w is the total number
of words, and s denotes the total number of sentences in d.
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Rls are interpretable and easy to implement. However, due to the significant
amount of constants, they are language-dependent and, most of the time, tailored
to the US grade level system. That restrains the number of possible applications a lot.

As for research on complexity estimation of the Russian text, it is worth high-
lighting works of I. Oborneva [12], where she derives new version of Flesch Readabil-
ity Ease (FRE) [10], customized for the Russian language.

FRE(d) = 206.836 — (1.52 x ASL) — (65.14 — ASW), 2

where ASL stands for the mean number of words per sentence, ASW—for mean syl-
lables per word. In 2018 V. Solovyev [14] obtains new readability formula created ex-
plicitly for Russian documents. Text complexities are valuable in different areas, e.g.,
[4] describes complexity formulas for legal documents in Russian.

In 2007 [1] introduced psychophysiological (cognitive) methods of measuring
text complexity, highlighting the following assumptions:

1. Any text can be considered as a sequence of tokens (codes)—parts of the
finite alphabet—Iletters, syllables, sentences, words, etc.

2. When reading the text, our nervous system decodes the tokens, progres-
sively on the following language levels: morphological, lexical, syntactic,
discursive, and semantic.

3. Decoding processes occur in different nervous system zones (e.g., part of the
cortex). Each zone is responsible for the specific token on a specific language
level. When the zone finishes the decoding process, it moves into the state
of refractoriness and needs time to recover. During the recovery, the zone
cannot execute decoding and forces another zone to take the load. Such a re-
distribution of nervous system resources diminishes effectiveness of the ner-
vous system as a whole, and the person starts perceiving the document with
more effort.

4. Thus, if the token’s distance to the previous occurrence exceeds some thresh-
old, the nervous system must allocate additional resources to decode it.
Such terms are considered complex. Hence, the complexity of the document
is a combination of abnormally frequent (complex) tokens.

In [1], authors propose to count the mentioned threshold as a quantile of the em-
pirical distribution, calculated over the large set of simple texts (reference collection).
They explore the morphological level, considering letters as a token. [2] introduces
a lexical level model, assuming the word complexity is determined only by its length.
[19] features the model on the discursive level, counting the number of connector
words and phrases in each sentence.

Based on the assumptions above, in this paper we elaborate our research pre-
sented in [6], offering models on the morphological, lexical, and syntactic levels, and
then training the linear model, obtaining the all-levels complexity model. Experi-
ments were performed on two datasets. We compare models with readability indexes
and cognitive models proposed in [1], [2], [19].
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2. General Model

Let d be the arbitrary document, consisting of tokens xy, ..., x, from a fixed token
alphabet Ay. Here, h refers to the language level, i.e., morphological, lexical, syntactic,
or discursive. So, the tokens may be letters, syllables, sentences, words, etc. We denote
¢; to be the cognitive complexity score of token x;, and w;—its weight. The document
complexity score then is a sum of weights over tokens having abnormal complexities.

To measure the token complexity, we use a reference collection—a set of moder-
ately complex texts—to calculate empirical distributions of complexity scores for each
token. Thus, the token’s complexity is abnormal when it is greater than a y-quantile
of the counted distribution (figure 1) (assumption 4). In our experiments we use Rus-
sian Wikipedia and Noosphere (noosphere.ru) open corpora as reference collections.
Former comprises more domain-specific documents (1.5M in total), while the latter
incorporates various types of texts, including fiction and poems (200K in total).
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Figure 1: Sample distribution of complexity scores and its y-quantile
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Finally, document d complexity W(d) is calculated by aggregating complexity
scores ¢; of complex tokens in d.

= > wile > Oy, ©

where [ ] refers to the Iverson notation (i.e. [true] = 1, [false] = 0), n is the number
of tokens from Ay in document d. Some examples of interpretable weights w; are pre-
sented in table 1.

Raising the weight to the p power, we obtain a nonlinear sum of weights:

= wlle > Cy(w)], @)
=1

where p > 0is an integer power.
If the token x; does not appear in the reference collection, we set C,(x;) equal
to —oo, therefore always counting it as abnormally complex.
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Thus, to set up the model, we need to specify the reference collection D, the al-
phabet Ap, token complexity function ¢, weights w, and power p.

Table 1: Weights w; examples

w; Meaning of w;

1 number of complex tokens
1/n X 100% complex tokens percentage
Ci total complexity

ci/n mean complexity

ci — C,(x) excessive complexity

(ci — C,(x))/n mean excessive complexity

3. Token complexity functions

Firstly, we indicate two approaches to estimating the complexity of a single token.

3.1. Distance-based complexity function

According to assumptions 3-5, let r; be a distance from previous token occur-
rence Xx; to its current occurrence in the text:

Tiri+1l LTi—pi42 -+ Ti—2 Ti-1

i

Equally,
Ty = 11%131212@ —J |z = x5} (5)
If i is the first occurrence of term t; in document d, there is no previous occur-
rence, so r; is undefined. To solve this issue. we redefine r; so that sum of r; over all
tokens x; = a is equal to n.
For example, if A, consists of the letters:

Table 2: r; and redefined r; examples for letter-based model

ry I — === ]=13]=1]7 153 |3 |[—|—]—
redefinedr; || 4 |15 [ 11 || 9 14 (3 |11 |7 5 |3 |3 14 |14 | 14

Then, we define token complexity function as some decreasing function f of r;:
¢ = f(r) ©6)

The f should be decreasing according to the assumption 4, as only the most fre-
quent terms put pressure on the nervous system. Example of f:

Ci = —Ti 7
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Hence, we build an empirical distribution of complexities {f(r)lx;=a} for all to-
kens a € Ay, count corresponding quantiles C,(x;) and, finally, calculate the complex-
ity score, according to formula (4).

3.2. Counter-based complexity functions

In the counter-based approach, we assume every term has fixed complexity
score (not depending on position in the text), so alphabet Aj, includes the only token:
Ap = {a}. In other words, the token’s complexity is defined only by its linguistic prop-
erties (e.g., length of the word or sentence).

Taking that into account, we construct single empirical distribution over all to-
kens. Therefore, the quantile is one for all tokens C,(x;) = C, and model (4) takes the
following form:

W(d) => ulle;>C,] (8)
i=1

4, Considered models

Trying different combinations of tokens and complexity functions, we want
to share models on four language levels.

4.1. Morphological complexity models

At the morphological level, tokens are letters, morphemes, syllables, or, in gen-
eral case, n-grams. Also, we can sort the letters in n-gram, therefore lessening the vo-
cabulary size to acquire more reliable distributions. Indeed, our brain easily handles
local letter permutations, so they do not affect the complexity much.

In our experiments, we use a distance-based model with complexity function (7)
for both letters, sorted and unsorted syllables.

The examples of empirical distributions for letter-based models over the Rus-
sian Wikipedia and Noosphere reference collections are introduced in figure 2. Com-
parison of the distributions for syllables-based and sorted-syllables-based models are
presented in figure 3.

4.2. Lexical complexity models

Here we use separate words as tokens. However, in such a case, the vocabulary
turns out to be vast and makes the distributions less precise. To shrink it, we eliminate
all short words (less than a length of 3) and too rare words (that appears only once
on the whole reference collection).

4.2.1. Distance-based model

The distance-based complexity model uses complexity function (7) as it calcu-
lates the distributions of the score for every word (lexical distance model). The ex-
ample of the distribution is shown in figure 4.
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Figure 2: Distribution of ¢; for the letter «Y»,
calculated over the Russian Wikipedia and Noosphere collections.
The orange part of the distribution correspond to ¢; > C,(x), y=0.95
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Figure 3: Distribution of ¢; for the syllable «J10K», calculated over
the Russian Wikipedia collection for models with and without sorting.
The orange part of the distribution corresponds to ¢; > C,(x), y=0.95
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Figure 4: Distribution of ¢; for the word «MATEMATKA»,
calculated over the Russian Wikipedia collection.
The orange part of the distribution corresponds to ¢; > C,(x), y=0.95
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4.2.2. Counter-based models

We explore two functions here. Firstly, [2] defines the complexity of the word
as its length (lexical length model). Therefore, the model builds empirical distribution
over all words’ lengths and counts the word as complex if it is long enough.

Advancing this approach, we consider not the word length, but its counter value
count(x;), which is the number of times word x; appears in reference collection (lexical
counter model). The complexity function should be a decreasing function of count(xy).
For example:

ci = —count(x;) ()

4.3. Syntactic complexity models

To estimate syntactic complexity, we use UDPipe [15] to extract syntactic de-
pendencies, part of speeches (noun, verb, adjective, etc.) and sentence parts (subject,
object, attribute, etc.). Using derived information, we propose two models.

4.3.1. Distance-based model

Let Aj, be a product of PoS—set of all parts of speech may occur, and SP—set of all
sentence parts. Therefore each a € Ay is a pair (p,s), where p € PoS and s € SP are
part of speech and sentence part respectively. We call such pairs syntgams.

We apply the distance complexity function (7) to such tokens to receive a dis-
tance-based syntactic model (syntactic syntgam model).

4.3.2. Counter-based model

Using the syntactic dependencies returned by the parser, we define the complex-
ity function as a length of the dependency (alike using word length [2]) and acquire
the counter-based syntactic model (syntactic length model). The examples of distribu-
tions are shown in figure 5.
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Figure 5: Distribution of syntactic dependencies’ lengths and distance-
based c¢; for syntgam (verb, root), calculated over the Russian Wikipedia
dataset. The part of the distribution corresponds to ¢; > C, (x), y=0.95
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4.4. Discursive complexity models

The last but not least language level we consider is the discursive level, initially
proposed in [19]. On this level, model evaluates the meaningfulness of text, its coher-
ence, and consistency.

To evaluate the complexity the vocabulary of common connector-words for the
Russian language (i.e., «<KOTOPBIii», «K3-3a TOT'O YTO», «C T€X IOP KaK», etc.) is used.
Thus, the more such connectors appear in the document, the more complex it is.

Therefore, we define a counter-based model with sentences as tokens, and com-
plexity function equal to the number of connectors in the sentence (discursive connec-
tors model).

5. Dataset

We used a crowdfunding platform Yandex.Toloka to gather a labeled dataset
of pairs of Russian Wikipedia pages.

Assessors were asked to label 10K pairs of Russian Wikipedia articles. We suggested
them to read both pages carefully and choose which is more challenging to comprehend.
The interface consisted of two links to evaluated articles and four options to choose from:
“LEFT” or “RIGHT” when an assessor assumes the left or the right document is more com-
plex, “EQUAL” in case the assessor cannot determine which document is more challenging
tocomprehend and “INVALID” optionifthe documentsin given pair lie in different domains.
The interface is shown in figure 6.

Mepeiitn Ha caitt  hitps://ru.wikiped... https:/fru.wikiped... = MepeiiTn Ha caiiT
Llenoe anreGpanyeckoe 4acno AnbTepHaTUBHaA MaTpuUa
Nesas crarbsa cnoxxee ﬂpaBaﬁ CTaTLA cnoxHee QOBe cTaten UmeroT 0OMHEKOBYH CNOKHOCTE HesoamoxHo onpegennTe

Figure 6: Interface for assessors at Yandex.Toloka

We chose documents from math, physics, medicine, and programming areas.
The topic modeling approach [9], namely the Additive Regularization of Topic Mod-
els (ARTM) theory [16], was used to cluster the documents by fields. ARTM features
an effective way to build structured multimodal topic models [17], [3]. We included
the modalities of words and word collocations, obtained with TopMine algorithm [5].
Then, documents from a single domain and with almost identical lengths formed the
pairs. Examples of document pairs to assess are introduced in table 3.

Each pair was labeled by two assessors to avoid human factor mistakes. We as-
sume that the pair was correctly labeled if labels were not controversial, i.e., one as-
sessor labeled the first document as more complex while others chose the second
document. If the pair was labeled as INVALID’ at least by a single person, we also
eliminated it from the final dataset.



Eremeev M. A., Vorontsov K. V.

Table 3: Examples of labeled document pairs

Left Document = Right Document Which document is more complex
Matrix Tensor RIGHT

Rational number | Fraction (mathematics) | LEFT

Proton Neutron EQUAL

Mac OS X Convex Hull INVALID

So, 8K pairs out of 10K were correctly labeled and formed the dataset
D = {(d,d") | d’ is more complex than d)}.

To shorten the calculations and formulas, let’s denote (d,d’) € Dasd < d'.

6. Ensembling models

Having the dataset, we can train a supervised model to piece together all the
proposed models. Such an ensemble combines estimations from all language levels.
We chose a linear combination to be the resulted model:

K
W(d,a) = axWi(d), ax >0, (10)
k=1
where vector « is the solution to the optimization problem:
> Z(W(d,a) - W(d,a)) — min, (11)
d<d

pair-wise margin
where L(M) is a smooth, non-increasing function of margin M.
To avoid overfitting, we use ElasticNet [18] method of combining L1 and L2
regularizes:
1 K K
30| ST 2(W(d,a) - W(d.a)) + A <(1 ) gaz +8> |ak|> — min, (12)

d=<d’ k=1 k=1

where f is a mixing parameter between ridge (8 = 0) and lasso (8 = 1), A controls
the regularization impact.

For £ function we consider three options:

e Negative SE: L(M) = — M?
* Negative sigmoid: L(M) = —o(M),wherea(x) = 1/(1 + expx)—sigmoid function
* Negative AE: L(M) = —|M|

The results of testing all models above and the ensemble are described in the
Experiments section.

10
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7. Experiments

We tested every model and the ensemble trained on the dataset mentioned
above. For all experiments, we used Wikipedia as a reference collection. The accuracy
score was selected as a quality metric.

dZd [c(d) < c(d)]
=< 1’
accuracy(c) = ———————— (13)
|D|

To validate the ensembles, we preliminarily split the dataset into train Dy.q;; and

test Dy, parts, so having 6K training objects and 2K testing.

7.1. Single models

We compare all aforementioned quantile-based models to various readability in-
dexes and baselines proposed in [1], [2] and [19]. As for hyperparameters, we used
w; = ¢;/n (for text length not to affect the scores), p = 1, and y = 0.95 for all models
proposed. The results are exposed in table 4.

Table 4: Comparison of readability indexes performance to proposed models

Model Class Model Accuracy
Readability Indexes Automated Readability Index 50.5%
Flesch-Kincaid Grade 44.7%
Gunning FOG 44.4%
Flesch Reading Ease 50.7%
Dale—Chall 37.0%
Linsear Write 45.2%
Coleman-Liau 52.1%
Morphological Letter [1] 63.7%
Syllables 70.9%
Sorted Syllables 73.1%
Lexical Length [2] 42.4%
Distance 75.0%
Counter 71.2%
Syntactic Length 62.0%
Syntgam 64.2%
Discursive Connectors [19] 62.5%

The lexical distance model demonstrates the best performance in terms of ac-
curacy among all the described models. Moreover, all quantile-based models, except
for lexical distance one, outperform readability indexes. The sorted-syllables model
performs better than unsorted, which proves the assumption about the sustainability
of distributions in the sorted-syllables model.

11
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7.2. Ensembles

Table 5: Comparison of ensembles with different margin
functions to the best models on different language levels

Model Margin Function  Accuracy

Coleman-Liau — 52.1%
Morphological Sorted Syllables — 73.1%
Lexical Distance — 75.0%
Syntactic Syntgams — 64.2%
Connectors — 62.5%
Ensemble Negative SE 88.1%
Ensemble Negative sigmoid 84.6%
Ensemble Negative AE 85.1%

To validate ensembles trained on Dyqin, we first evaluate all models on Dy part
of the dataset to get comparable results. In table 5, we compare the best models from
all language levels with ensembles with various margin functions. We set the hyper-
parameters equal § = 0.5 and A = 10 for all models.

As can be seen, Negative SE works best for fitting an ensemble, while all en-
sembles demonstrate quality growth compared to other models.

7.3. Noosphere Reference Collection

Here we explore the impact of the reference collection on the models’ perfor-
mance. We fitted the models with Noosphere corpora as a reference collection. This
collection is less scientific and formal, featuring diverse literary works. We still evalu-
ate the models on the labeled dataset, introduced in Section 5. The results are ex-
posed in table 6.

Table 6: Comparison of models fitted on Noosphere reference collection

Model Class Model Accuracy
Morphological Letter [1] 60.3%
Syllables 69.2%
Sorted Syllables 70.5%
Lexical Length [2] 39.8%
Distance 72.1%
Counter 66.9%
Syntactic Length 63.1%
Syntgam 66.4%
Discursive Connectors [19] 60.2%
Ensembles Negative MSE 83.1%

All scores are lower, except for the syntactic models. There are understandable
reasons for that. Firstly, the Noosphere collection is smaller than Wikipedia, resulting

12
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in less accurate empirical distribution estimations. Secondly, the collection consists
of the non-scientific documents and does not contain specialized terms. Nevertheless,
syntactic models improve their performance, mainly because of the absence of formu-
las in the reference collection.

Overall, the ensemble’s accuracy is still higher than 80%, which outperforms
both the readability indices and cognitive model baselines.

8. Conclusion

In conclusion, we presented new quantile-based models to measure cognitive
text complexity. All models are based on psychophysiological assumptions. We ex-
plored models dealing with tokens from morphological, lexical, syntactic, and discur-
sive language levels. All complexity scores are calculated with respect to the reference
collection—a set of adequately simple documents used to obtain the empirical distri-
butions of the token complexities. The reference collection should be chosen carefully
and be large enough, but it gives high flexibility to the discussed approach. By vary-
ing the reference collection, we can obtain complexity scores concerning a particular
domain. We introduced the way to measure the quality of the cognitive complexity
models, based on crowdsourcing. By ensembling models from various language lev-
els, we attain an accuracy score of more than 88% and 83% using Russian Wikipedia
and Noosphere reference collections, respectively. Suggested models outperform the
readability indices and previously proposed cognitive complexity models.
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