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based on the linear combination of primary statistics, our general approach 
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language levels. Having collected a labeled dataset through crowdsourc-
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several models and ensembles and compare them to common baselines. 
Suggested models are flexible due to the freedom in choosing the refer-
ence collection. The described experiments confirm the competitiveness 
of the proposed approach, as the ensembles demonstrate the best target 
metric value.
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В данной статье описан подход к оцениванию когнитивной сложности 
текста на разных уровнях языка. В отличие от индексов удобочитаемо-
сти, которые основаны на линейной комбинации текстовых статистик, 
мы предлагаем обобщенный подход, поззволяющий оценивать слож-
ность на морфологическом, лексическом, синтаксическом и дискур-
сивном уровнях языка. Мы используем референтный корпус текстов 
и квантильный подход для определения токенов с аномальной часто-
той. Собрав выборку размеченных пар документов русской Википе-
дии, мы также обучаем и исследуем линейную комбинацию моделей 
со всех уровней языка. Приведенные в статье результаты эксперимен-
тов показывают конкурентоспособность предложенного подхода.

Ключевые слова: когнитивная сложность, уровни языка, обучение 
с учителем, разведочный поиск

1.	 Introduction

Automated text complexity measurement tools have been proposed in order 
to help teachers to select textbooks that correspond to the students’ comprehen-
sion level and publishers to explore whether their articles are readable. Thus, plenty 
of readability indexes (RIs) were developed. Readability indexes focus on estimating 
complexity by evaluating aggregated syntactic and lexical features of the whole texts. 
There are many well-known RIs, such as Automated Readability Index [13], Flesch-Kin-
caid readability tests [7], Gunning fog [8] and fairly modern ones like Linsear Write For-
mula [11]. They all use statistics like the total number of words, mean number of words 
per sentence, or the number of syllables to evaluate how complex given text is. By com-
bining these statistics, RIs assign the given document a complexity score. For instance, 
an Automated Readability Index (ARI) has the following form for the document d:

	 ARI(d) = 4.71× c

w
+ 0.5× w

s
− 21.43, (1)

W (d) =
n∑

i=1

wi [ci > Cγ(xi)] , (3)

W (d) =
n∑

i=1

wp
i [ci > Cγ(xi)] , (4)

. . . xi−ri = a xi−ri+1 xi−ri+2 . . . xi−2 xi−1 xi = a︸ ︷︷ ︸
ri

. . .

ri = min
1≤j<i

{i− j | xi = xj}. (5)

W (d) =
n∑

i=1

wp
i [ci > Cγ] (8)

W (d, α) =
K∑
k=1

αkWk(d), αk ≥ 0, (10)

∑
d≺d′

L
(
W (d′, α)−W (d, α)︸ ︷︷ ︸

pair-wise margin

)
→ min

α
, (11)

1

2|D|
∑
d≺d′

L
(
W (d′, α)−W (d, α)

)
+ λ

(
(1− β)

K∑
k=1

α2
k + β

K∑
k=1

|αk|

)
→ min

α
, (12)

accuracy(c) =

∑
d≺d′

[c(d) < c(d′)]

|D|
(13)

� (1)

where c refers to the total number of letters in document d, w is the total number 
of words, and s denotes the total number of sentences in d.
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RIs are interpretable and easy to implement. However, due to the significant 
amount of constants, they are language-dependent and, most of the time, tailored 
to the US grade level system. That restrains the number of possible applications a lot.

As for research on complexity estimation of the Russian text, it is worth high-
lighting works of I. Oborneva [12], where she derives new version of Flesch Readabil-
ity Ease (FRE) [10], customized for the Russian language.

		             FRE(d) = 206.836 − (1.52 × ASL) − (65.14 − ASW), � (2)

where ASL stands for the mean number of words per sentence, ASW—for mean syl-
lables per word. In 2018 V. Solovyev [14] obtains new readability formula created ex-
plicitly for Russian documents. Text complexities are valuable in different areas, e.g., 
[4] describes complexity formulas for legal documents in Russian.  

In 2007 [1] introduced psychophysiological (cognitive) methods of measuring 
text complexity, highlighting the following assumptions:

1.	� Any text can be considered as a sequence of tokens (codes)—parts of the 
finite alphabet—letters, syllables, sentences, words, etc.

2.	� When reading the text, our nervous system decodes the tokens, progres-
sively on the following language levels: morphological, lexical, syntactic, 
discursive, and semantic.

3.	� Decoding processes occur in different nervous system zones (e.g., part of the 
cortex). Each zone is responsible for the specific token on a specific language 
level. When the zone finishes the decoding process, it moves into the state 
of refractoriness and needs time to recover. During the recovery, the zone 
cannot execute decoding and forces another zone to take the load. Such a re-
distribution of nervous system resources diminishes effectiveness of the ner-
vous system as a whole, and the person starts perceiving the document with 
more effort.

4.	� Thus, if the token’s distance to the previous occurrence exceeds some thresh-
old, the nervous system must allocate additional resources to decode it. 
Such terms are considered complex. Hence, the complexity of the document 
is a combination of abnormally frequent (complex) tokens.

In [1], authors propose to count the mentioned threshold as a quantile of the em-
pirical distribution, calculated over the large set of simple texts (reference collection). 
They explore the morphological level, considering letters as a token. [2] introduces 
a lexical level model, assuming the word complexity is determined only by its length. 
[19] features the model on the discursive level, counting the number of connector 
words and phrases in each sentence.

Based on the assumptions above, in this paper we elaborate our research pre-
sented in [6], offering models on the morphological, lexical, and syntactic levels, and 
then training the linear model, obtaining the all-levels complexity model. Experi-
ments were performed on two datasets. We compare models with readability indexes 
and cognitive models proposed in [1], [2], [19].
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2.	 General Model

Let d be the arbitrary document, consisting of tokens x1, …, xn from a fixed token 
alphabet Ah. Here, h refers to the language level, i.e., morphological, lexical, syntactic, 
or discursive. So, the tokens may be letters, syllables, sentences, words, etc. We denote 
ci to be the cognitive complexity score of token xi, and wi—its weight. The document 
complexity score then is a sum of weights over tokens having abnormal complexities.

To measure the token complexity, we use a reference collection—a set of moder-
ately complex texts—to calculate empirical distributions of complexity scores for each 
token. Thus, the token’s complexity is abnormal when it is greater than a 𝛾-quantile 
of the counted distribution (figure 1) (assumption 4). In our experiments we use Rus-
sian Wikipedia and Noosphere (noosphere.ru) open corpora as reference collections. 
Former comprises more domain-specific documents (1.5M in total), while the latter 
incorporates various types of texts, including fiction and poems (200K in total).

Figure 1: Sample distribution of complexity scores and its γ-quantile

Finally, document d complexity W(d) is calculated by aggregating complexity 
scores ci of complex tokens in d.

	

ARI(d) = 4.71× c

w
+ 0.5× w

s
− 21.43, (1)

W (d) =
n∑

i=1

wi [ci > Cγ(xi)] , (3)

W (d) =
n∑

i=1

wp
i [ci > Cγ(xi)] , (4)

. . . xi−ri = a xi−ri+1 xi−ri+2 . . . xi−2 xi−1 xi = a︸ ︷︷ ︸
ri

. . .

ri = min
1≤j<i

{i− j | xi = xj}. (5)

W (d) =
n∑

i=1

wp
i [ci > Cγ] (8)

W (d, α) =
K∑
k=1

αkWk(d), αk ≥ 0, (10)

∑
d≺d′

L
(
W (d′, α)−W (d, α)︸ ︷︷ ︸

pair-wise margin

)
→ min

α
, (11)

1

2|D|
∑
d≺d′

L
(
W (d′, α)−W (d, α)

)
+ λ

(
(1− β)

K∑
k=1

α2
k + β

K∑
k=1

|αk|

)
→ min

α
, (12)

accuracy(c) =

∑
d≺d′

[c(d) < c(d′)]

|D|
(13)

� (3)

where [ ] refers to the Iverson notation (i.e. [true] = 1, [ false] = 0), n is the number 
of tokens from Ah in document d. Some examples of interpretable weights wi are pre-
sented in table 1.

Raising the weight to the p power, we obtain a nonlinear sum of weights:

	

ARI(d) = 4.71× c

w
+ 0.5× w

s
− 21.43, (1)

W (d) =
n∑

i=1

wi [ci > Cγ(xi)] , (3)

W (d) =
n∑

i=1

wp
i [ci > Cγ(xi)] , (4)

. . . xi−ri = a xi−ri+1 xi−ri+2 . . . xi−2 xi−1 xi = a︸ ︷︷ ︸
ri

. . .

ri = min
1≤j<i

{i− j | xi = xj}. (5)

W (d) =
n∑

i=1

wp
i [ci > Cγ] (8)

W (d, α) =
K∑
k=1

αkWk(d), αk ≥ 0, (10)

∑
d≺d′

L
(
W (d′, α)−W (d, α)︸ ︷︷ ︸

pair-wise margin

)
→ min

α
, (11)

1

2|D|
∑
d≺d′

L
(
W (d′, α)−W (d, α)

)
+ λ

(
(1− β)

K∑
k=1

α2
k + β

K∑
k=1

|αk|

)
→ min

α
, (12)

accuracy(c) =

∑
d≺d′

[c(d) < c(d′)]

|D|
(13)

� (4) 

where p > 0 is an integer power.
If the token xi does not appear in the reference collection, we set C𝛾(xi) equal 

to −∞, therefore always counting it as abnormally complex.

↑
Cγ(x)

сi
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Thus, to set up the model, we need to specify the reference collection D, the al-
phabet Ah, token complexity function c, weights w, and power p.

Table 1: Weights wi examples

wi Meaning of wi

1 number of complex tokens
1/n × 100% complex tokens percentage
ci total complexity
ci/n mean complexity
ci − C𝛾(xi) excessive complexity
(ci − C𝛾(xi))/n mean excessive complexity

3.	 Token complexity functions

Firstly, we indicate two approaches to estimating the complexity of a single token.

3.1.	Distance-based complexity function

According to assumptions 3–5, let ri be a distance from previous token occur-
rence xi to its current occurrence in the text: 

	

ARI(d) = 4.71× c

w
+ 0.5× w

s
− 21.43, (1)

W (d) =
n∑

i=1

wi [ci > Cγ(xi)] , (3)

W (d) =
n∑

i=1

wp
i [ci > Cγ(xi)] , (4)

. . . xi−ri = a xi−ri+1 xi−ri+2 . . . xi−2 xi−1 xi = a︸ ︷︷ ︸
ri

. . .

ri = min
1≤j<i

{i− j | xi = xj}. (5)

W (d) =
n∑

i=1

wp
i [ci > Cγ] (8)

W (d, α) =
K∑
k=1

αkWk(d), αk ≥ 0, (10)

∑
d≺d′

L
(
W (d′, α)−W (d, α)︸ ︷︷ ︸

pair-wise margin

)
→ min

α
, (11)

1

2|D|
∑
d≺d′

L
(
W (d′, α)−W (d, α)

)
+ λ

(
(1− β)

K∑
k=1

α2
k + β

K∑
k=1

|αk|

)
→ min

α
, (12)

accuracy(c) =

∑
d≺d′

[c(d) < c(d′)]

|D|
(13)

�

Equally,

	

ARI(d) = 4.71× c

w
+ 0.5× w

s
− 21.43, (1)

W (d) =
n∑

i=1

wi [ci > Cγ(xi)] , (3)

W (d) =
n∑

i=1

wp
i [ci > Cγ(xi)] , (4)

. . . xi−ri = a xi−ri+1 xi−ri+2 . . . xi−2 xi−1 xi = a︸ ︷︷ ︸
ri

. . .

ri = min
1≤j<i

{i− j | xi = xj}. (5)

W (d) =
n∑

i=1

wp
i [ci > Cγ] (8)

W (d, α) =
K∑
k=1

αkWk(d), αk ≥ 0, (10)

∑
d≺d′

L
(
W (d′, α)−W (d, α)︸ ︷︷ ︸

pair-wise margin

)
→ min

α
, (11)

1

2|D|
∑
d≺d′

L
(
W (d′, α)−W (d, α)

)
+ λ

(
(1− β)

K∑
k=1

α2
k + β

K∑
k=1

|αk|

)
→ min

α
, (12)

accuracy(c) =

∑
d≺d′

[c(d) < c(d′)]

|D|
(13)

� (5)

If i is the first occurrence of term ti in document d, there is no previous occur-
rence, so ri is undefined. To solve this issue. we redefine ri so that sum of ri over all 
tokens xi = a is equal to n.

For example, if Ah consists of the letters:

Table 2: ri and redefined ri examples for letter-based model

token t h e g r e a t g a t s b y

ri — — — — — 3 — 7 5 3 3 — — —
redefined ri 4 15 11 9 14 3 11 7 5 3 3 14 14 14

Then, we define token complexity function as some decreasing function f of ri:

					              ci =  f(ri)� (6)

The f should be decreasing according to the assumption 4, as only the most fre-
quent terms put pressure on the nervous system. Example of f:

					             ci = −ri,� (7)
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Hence, we build an empirical distribution of complexities {f(ri)∣xi=a} for all to-
kens a ∈ Ah, count corresponding quantiles C𝛾(xi) and, finally, calculate the complex-
ity score, according to formula (4).

3.2.	Counter-based complexity functions

In the counter-based approach, we assume every term has fixed complexity 
score (not depending on position in the text), so alphabet Ah includes the only token: 
Ah = {a}. In other words, the token’s complexity is defined only by its linguistic prop-
erties (e.g., length of the word or sentence).

Taking that into account, we construct single empirical distribution over all to-
kens. Therefore, the quantile is one for all tokens C𝛾(xi) = C𝛾 and model (4) takes the 
following form:

	

ARI(d) = 4.71× c

w
+ 0.5× w

s
− 21.43, (1)

W (d) =
n∑

i=1

wi [ci > Cγ(xi)] , (3)

W (d) =
n∑

i=1

wp
i [ci > Cγ(xi)] , (4)

. . . xi−ri = a xi−ri+1 xi−ri+2 . . . xi−2 xi−1 xi = a︸ ︷︷ ︸
ri

. . .

ri = min
1≤j<i

{i− j | xi = xj}. (5)

W (d) =
n∑

i=1

wp
i [ci > Cγ] (8)

W (d, α) =
K∑
k=1

αkWk(d), αk ≥ 0, (10)

∑
d≺d′

L
(
W (d′, α)−W (d, α)︸ ︷︷ ︸

pair-wise margin

)
→ min

α
, (11)

1

2|D|
∑
d≺d′

L
(
W (d′, α)−W (d, α)

)
+ λ

(
(1− β)

K∑
k=1

α2
k + β

K∑
k=1

|αk|

)
→ min

α
, (12)

accuracy(c) =

∑
d≺d′

[c(d) < c(d′)]

|D|
(13)

� (8)

4.	 Considered models

Trying different combinations of tokens and complexity functions, we want 
to share models on four language levels.

4.1.	Morphological complexity models

At the morphological level, tokens are letters, morphemes, syllables, or, in gen-
eral case, n-grams. Also, we can sort the letters in n-gram, therefore lessening the vo-
cabulary size to acquire more reliable distributions. Indeed, our brain easily handles 
local letter permutations, so they do not affect the complexity much.

In our experiments, we use a distance-based model with complexity function (7) 
for both letters, sorted and unsorted syllables.

The examples of empirical distributions for letter-based models over the Rus-
sian Wikipedia and Noosphere reference collections are introduced in figure 2. Com-
parison of the distributions for syllables-based and sorted-syllables-based models are 
presented in figure 3.

4.2.	Lexical complexity models

Here we use separate words as tokens. However, in such a case, the vocabulary 
turns out to be vast and makes the distributions less precise. To shrink it, we eliminate 
all short words (less than a length of 3) and too rare words (that appears only once 
on the whole reference collection).

4.2.1.	 Distance-based model
The distance-based complexity model uses complexity function (7) as it calcu-

lates the distributions of the score for every word (lexical distance model). The ex-
ample of the distribution is shown in figure 4.
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Figure 4: Distribution of ci

Figure 2: Distribution of сi for the letter «У»,  
calculated over the Russian Wikipedia and Noosphere collections.  
The orange part of the distribution correspond to сi > Cγ (x), γ = 0.95

−60 −50 −40 −30 −20 −10 0
0

2

4

6

·105

Complexity score ci

N
um

be
r

of
oc

cu
rr

en
ce

s

−60 −50 −40 −30 −20 −10 0
0

2

4

6

·105

Complexity score ci

N
um

be
r

of
oc

cu
rr

en
ce

s

Figure 2: Distribution of

−60 −50 −40 −30 −20 −10 0
0

1

2

3

4

·103

Complexity score ci

N
um

be
r

of
oc

cu
rr

en
ce

s

−60 −50 −40 −30 −20 −10 0
0

1

2

3

4

·103

Complexity score ci

N
um

be
r

of
oc

cu
rr

en
ce

s

Figure 3: Distribution of

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
0

50

100

150

200

Complexity score ci

N
um

be
r

of
oc

cu
rr

en
ce

s

Figure 4: Distribution of ci

Figure 3: Distribution of сi for the syllable «ЛОК», calculated over 
the Russian Wikipedia collection for models with and without sorting. 
The orange part of the distribution corresponds to сi > Cγ (x), γ = 0.95
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Figure 4: Distribution of ci

Figure 4: Distribution of сi for the word «МАТЕМАТИКА»,  
calculated over the Russian Wikipedia collection.  

The orange part of the distribution corresponds to сi > Cγ (x), γ = 0.95
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4.2.2.	 Counter-based models
We explore two functions here. Firstly, [2] defines the complexity of the word 

as its length (lexical length model). Therefore, the model builds empirical distribution 
over all words’ lengths and counts the word as complex if it is long enough.

Advancing this approach, we consider not the word length, but its counter value 
count(xi), which is the number of times word xi appears in reference collection (lexical 
counter model). The complexity function should be a decreasing function of count(xi). 
For example:

					     ci = −count(xi)� (9)

4.3.	Syntactic complexity models

To estimate syntactic complexity, we use UDPipe [15] to extract syntactic de-
pendencies, part of speeches (noun, verb, adjective, etc.) and sentence parts (subject, 
object, attribute, etc.). Using derived information, we propose two models.

4.3.1.	 Distance-based model
Let Ah be a product of PoS—set of all parts of speech may occur, and SP—set of all 

sentence parts. Therefore each a ∈ Ah is a pair (p, s), where p ∈ PoS and s ∈ SP are 
part of speech and sentence part respectively. We call such pairs syntgams.

We apply the distance complexity function (7) to such tokens to receive a dis-
tance-based syntactic model (syntactic syntgam model).

4.3.2.	 Counter-based model
Using the syntactic dependencies returned by the parser, we define the complex-

ity function as a length of the dependency (alike using word length [2]) and acquire 
the counter-based syntactic model (syntactic length model). The examples of distribu-
tions are shown in figure 5.
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Figure 5: Distribution of syntactic dependencies’ lengths and distance-basedFigure 5: Distribution of syntactic dependencies’ lengths and distance-
based сi for syntgam (verb, root), calculated over the Russian Wikipedia 

dataset. The orange part of the distribution corresponds to сi > Cγ (x), γ = 0.95
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4.4.	Discursive complexity models

The last but not least language level we consider is the discursive level, initially 
proposed in [19]. On this level, model evaluates the meaningfulness of text, its coher-
ence, and consistency.

To evaluate the complexity the vocabulary of common connector-words for the 
Russian language (i.e., «который», «из-за того что», «с тех пор как», etc.) is used. 
Thus, the more such connectors appear in the document, the more complex it is.

Therefore, we define a counter-based model with sentences as tokens, and com-
plexity function equal to the number of connectors in the sentence (discursive connec-
tors model).

5.	 Dataset

We used a crowdfunding platform Yandex.Toloka to gather a labeled dataset 
of pairs of Russian Wikipedia pages.

Assessors were asked to label 10K pairs of Russian Wikipedia articles. We suggested 
them to read both pages carefully and choose which is more challenging to comprehend. 
The interface consisted of two links to evaluated articles and four options to choose from: 
“LEFT” or “RIGHT” when an assessor assumes the left or the right document is more com-
plex, “EQUAL” in case the assessor cannot determine which document is more challenging 
to comprehend and “INVALID” option if the documents in given pair lie in different domains. 
The interface is shown in figure 6.

Figure 6: Interface for assessors at Yandex.Toloka

We chose documents from math, physics, medicine, and programming areas. 
The topic modeling approach [9], namely the Additive Regularization of Topic Mod-
els (ARTM) theory [16], was used to cluster the documents by fields. ARTM features 
an effective way to build structured multimodal topic models [17], [3]. We included 
the modalities of words and word collocations, obtained with TopMine algorithm [5]. 
Then, documents from a single domain and with almost identical lengths formed the 
pairs. Examples of document pairs to assess are introduced in table 3.

Each pair was labeled by two assessors to avoid human factor mistakes. We as-
sume that the pair was correctly labeled if labels were not controversial, i.e., one as-
sessor labeled the first document as more complex while others chose the second 
document. If the pair was labeled as ‘INVALID’ at least by a single person, we also 
eliminated it from the final dataset.
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Table 3: Examples of labeled document pairs

Left Document Right Document Which document is more complex

Matrix Tensor RIGHT
Rational number Fraction (mathematics) LEFT
Proton Neutron EQUAL
Mac OS X Convex Hull INVALID

So, 8K pairs out of 10K were correctly labeled and formed the dataset

D = {(d, d′) ∣ d′ is more complex than d)}.

To shorten the calculations and formulas, let’s denote (d, d′) ∈ D as d ≺ d′.

6.	 Ensembling models

Having the dataset, we can train a supervised model to piece together all the 
proposed models. Such an ensemble combines estimations from all language levels.

We chose a linear combination to be the resulted model:
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where vector 𝛼 is the solution to the optimization problem:
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where ℒ(M) is a smooth, non-increasing function of margin M.
To avoid overfitting, we use ElasticNet [18] method of combining L1 and L2 

regularizes:
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where 𝛽 is a mixing parameter between ridge (𝛽 = 0) and lasso (𝛽 = 1), 𝜆 controls 
the regularization impact. 

For ℒ function we consider three options:

•	 Negative SE: ℒ(M) =   − M2

•	 Negative sigmoid: ℒ(M) = −𝜎(M), where 𝜎(x) = 1/(1 + expx)—sigmoid function
•	 Negative AE: ℒ(M) = −|M|

The results of testing all models above and the ensemble are described in the 
Experiments section.
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7.	 Experiments

We tested every model and the ensemble trained on the dataset mentioned 
above. For all experiments, we used Wikipedia as a reference collection. The accuracy 
score was selected as a quality metric. 
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To validate the ensembles, we preliminarily split the dataset into train Dtrain and 
test Dtest parts, so having 6K training objects and 2K testing.

7.1.	 Single models

We compare all aforementioned quantile-based models to various readability in-
dexes and baselines proposed in [1], [2] and [19]. As for hyperparameters, we used 
wi = ci / n (for text length not to affect the scores), p = 1, and 𝛾 = 0.95 for all models 
proposed. The results are exposed in table 4.

Table 4: Comparison of readability indexes performance to proposed models

Model Class Model Accuracy

Readability Indexes Automated Readability Index 50.5%
Flesch-Kincaid Grade 44.7%
Gunning FOG 44.4%
Flesch Reading Ease 50.7%
Dale–Chall 37.0%
Linsear Write 45.2%
Coleman-Liau 52.1%

Morphological Letter [1] 63.7%
Syllables 70.9%
Sorted Syllables 73.1%

Lexical Length [2] 42.4%
Distance 75.0%
Counter 71.2%

Syntactic Length 62.0%
Syntgam 64.2%

Discursive Connectors [19] 62.5%

The lexical distance model demonstrates the best performance in terms of ac-
curacy among all the described models. Moreover, all quantile-based models, except 
for lexical distance one, outperform readability indexes. The sorted-syllables model 
performs better than unsorted, which proves the assumption about the sustainability 
of distributions in the sorted-syllables model.
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7.2.	Ensembles

Table 5: Comparison of ensembles with different margin 
functions to the best models on different language levels

Model Margin Function Accuracy

Coleman-Liau — 52.1%
Morphological Sorted Syllables — 73.1%
Lexical Distance — 75.0%
Syntactic Syntgams — 64.2%
Connectors — 62.5%
Ensemble Negative SE 88.1%
Ensemble Negative sigmoid 84.6%
Ensemble Negative AE 85.1%

To validate ensembles trained on Dtrain, we first evaluate all models on Dtest part 
of the dataset to get comparable results. In table 5, we compare the best models from 
all language levels with ensembles with various margin functions. We set the hyper-
parameters equal 𝛽 = 0.5 and 𝜆 = 10 for all models.

As can be seen, Negative SE works best for fitting an ensemble, while all en-
sembles demonstrate quality growth compared to other models.

7.3.	Noosphere Reference Collection

Here we explore the impact of the reference collection on the models’ perfor-
mance. We fitted the models with Noosphere corpora as a reference collection. This 
collection is less scientific and formal, featuring diverse literary works. We still evalu-
ate the models on the labeled dataset, introduced in Section 5. The results are ex-
posed in table 6.

Table 6: Comparison of models fitted on Noosphere reference collection

Model Class Model Accuracy

Morphological Letter [1] 60.3%
Syllables 69.2%
Sorted Syllables 70.5%

Lexical Length [2] 39.8%
Distance 72.1%
Counter 66.9%

Syntactic Length 63.1%
Syntgam 66.4%

Discursive Connectors [19] 60.2%
Ensembles Negative MSE 83.1%

All scores are lower, except for the syntactic models. There are understandable 
reasons for that. Firstly, the Noosphere collection is smaller than Wikipedia, resulting 
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in less accurate empirical distribution estimations. Secondly, the collection consists 
of the non-scientific documents and does not contain specialized terms. Nevertheless, 
syntactic models improve their performance, mainly because of the absence of formu-
las in the reference collection.

Overall, the ensemble’s accuracy is still higher than 80%, which outperforms 
both the readability indices and cognitive model baselines.

8.	 Conclusion

In conclusion, we presented new quantile-based models to measure cognitive 
text complexity. All models are based on psychophysiological assumptions. We ex-
plored models dealing with tokens from morphological, lexical, syntactic, and discur-
sive language levels. All complexity scores are calculated with respect to the reference 
collection—a set of adequately simple documents used to obtain the empirical distri-
butions of the token complexities. The reference collection should be chosen carefully 
and be large enough, but it gives high flexibility to the discussed approach. By vary-
ing the reference collection, we can obtain complexity scores concerning a particular 
domain. We introduced the way to measure the quality of the cognitive complexity 
models, based on crowdsourcing. By ensembling models from various language lev-
els, we attain an accuracy score of more than 88% and 83% using Russian Wikipedia 
and Noosphere reference collections, respectively. Suggested models outperform the 
readability indices and previously proposed cognitive complexity models.
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